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Abstract 

Freezing-induced water migration and groundwater level decline are widely observed in regions with 

shallow water table, but many existing studies trying to quantify freezing-induced groundwater migration do not 

account for water level fluctuations induced by freezing and thawing. Here, detailed field observations of liquid 15 

soil water content and groundwater level fluctuations at a site in the Ordos Plateau, China are combined with 

numerical modeling to show groundwater and soil water dynamics controlled by wintertime atmospheric 

conditions and topographically-driven lateral groundwater inflow. By comparing simulation results with and 

without lateral groundwater inflow, we find lateral groundwater inflow leads to an alleviated freezing-induced 

water level decline and enhanced freezing-induced water migration. At the field site with a lateral groundwater 20 

inflow rate of 1.03 mm/d, compared with the case without lateral groundwater inflow, the water level decline 

decreases from 40 cm to 15 cm, and the increased total water content in the frozen zone enhances from 0.071 to 

0.106. By calculating the budget of groundwater, the mean upward flux of freezing-induced groundwater loss is 

1.46 mm/d for 93 days, and the mean flux of thawing-induced groundwater gain is as high as 3.94 mm/d for 32 

days. The study enhances our understanding of the mechanisms controlling water redistribution between 25 

saturated and unsaturated zones and the water budget in the freezing-thawing cycle. The fluxes of groundwater 

loss and gain in the freezing and thawing stages obtained in the current study can be useful for future studies on 

two- or three-dimensional transient groundwater flow in semi-arid regions with seasonally frozen soils.  
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1 Introduction 

Frozen soils have great impacts on many hydrological, hydrogeological processes and ecological processes 30 

(Nelson, 2003;Kurylyk et al., 2014;Schuur et al., 2015;Walvoord and Kurylyk, 2016;Evans et al., 2018;Zhang et 

al., 2020). In fact, frozen soils can be divided into permafrost and seasonally frozen soils, which underlie 

approximately 26% and 24%, respectively, of the Northern Hemisphere exposed land surface (Zhang et al., 

2003;Dobinski, 2011;Evans and Ge, 2017). The behaviors of subsurface water flow and storage in seasonally 

frozen soils are distinct from both colder regions with permafrost and warmer regions with insignificant frozen 35 

soil (Ireson et al., 2013). Understanding the effects of soil freezing and thawing on subsurface water flow and 

storage is a necessary path for better water resources management in (semi-)arid regions with occurrence of 

seasonally frozen soils (Yu et al., 2020). 

In seasonally frozen regions, by blocking pores and reducing hydraulic conductivity, soil freezing could lead 

to decreased infiltration (van der Kamp et al., 2003;Iwata et al., 2008;Demand et al., 2019) and limited surface 40 

evaporation (Kaneko et al., 2006;Wu et al., 2016). Soil freezing also generated cryosuction (Williams and Smith, 

1989;Hohmann, 1997;Yu et al., 2018), which causes migration of water from the unfrozen zone to the freezing 

front and further decrease the hydraulic conductivity of frozen soils. By assuming that freezing-induced water 

migration is restricted within the shallow part of unsaturated zone which is far away from the water table, many 

numerical studies deployed a free drainage lower boundary condition and examined the effects of 45 

freezing-induced water redistribution on infiltration and runoff (Cherkauer and Lettenmaier, 1999;Okkonen et al., 

2017;Zhang et al., 2017). In fact, freezing-induced water movement is not restricted within the unsaturated zone, 

and water could be migrated from the saturated zone through the unsaturated zone to the freezing front (Harlan, 

1973;van der Kamp, 1992;Ireson et al., 2013). Since the 1950s, there are many field observations of 

freezing-induced groundwater level decline (Drescher, 1955;Schneider, 1961;Stähli et al., 1999;Daniel and 50 

Staricka, 2000;van der Kamp et al., 2003;Ireson et al., 2013;Zhang et al., 2019), which are closely related to 

shallow groundwater in topographic lows (Gleeson et al., 2011;Fan et al., 2013). Unfortunately, numerical 

research on freezing-induced water redistribution that satisfactorily considers freezing-induced groundwater level 

decline is limited, which restricts quantitative understanding of water budgets in the freezing/thawing cycle. 

To understand the effects of soil freezing on hydrogeological and ecohydrological processes and 55 

engineering problems, a key knowledge is the amount of freezing-induced water migration from the saturated 

zone to the frozen zone. Freezing-induced water migration from the saturated zone to the freezing front would 
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necessarily strengthen the possibility of frost heave (Chamberlain, 1981;Bronfenbrener and Bronfenbrener, 

2010;Rui et al., 2019). During the thawing stage, accumulation of thawed water above the frozen zone would 

accelerate soil evaporation (Fetzer et al., 2017;Vanderborgh et al., 2017;Li et al., 2020), which is critical to soil 60 

salinization (Liu et al., 2009;Lopez et al., 2010;Bechtold et al., 2011). In some previous experimental and 

numerical studies, freezing-induced water migration from groundwater to the frozen zone was obtained by 

assuming a fixed water table (Shoop and Bigl, 1997;Hansson and Lundin, 2006;Alkhaier et al., 2012;Chen et al., 

2019). In fact, a fixed water table lower boundary condition is an over-simplified representation of groundwater 

conditions (Carrera-Hernández et al., 2012), which implies that loss of groundwater can be replenished 65 

instantaneously. It has been found that a fixed water table would overestimate evaporation-induced groundwater 

loss (Zhu et al., 2010;Zhao et al., 2020). However, the degree of overestimation of freezing-induced groundwater 

migration by using a fixed head lower boundary condition remains unknown.  

As initially proposed by Hubert (1940) and Tóth (1962), lateral groundwater flow is ubiquitous in regions 

with undulating topography and water table. Although wintertime water table fluctuations caused by freezing 70 

and thawing have been widely recognized (Willis et al., 1964;van der Kamp et al., 2003;Zhang et al., 2019), 

the simultaneous contribution of lateral groundwater flow to wintertime water table fluctuations received little 

attention. Ireson et al. (2013) found the wintertime water table recessions in their two study sites in the Canadian 

prairies were partly due to lateral groundwater outflow, while Jiang et al. (2017) found the pattern of wintertime 

water table fall-rise in their study site in the Ordos Plateau, China was also influenced by lateral groundwater 75 

inflow. Therefore, the wintertime water table dynamics is not prior known, but is a function of both atmospheric 

conditions and lateral groundwater inflow/outflow and should be a part of model output. To obtain a clear 

understanding of wintertime water migration in regions with shallow groundwater, it is appealing to numerically 

combine hydrological processes in both saturated and unsaturated zones, including topographically-driven lateral 

flow in the saturated zone, freezing-induced water migration from the saturated to the unsaturated zone, and 80 

thawing-induced water movement. In the current study, the field site reported in Jiang et al. (2017), which has 

shallow water table and lateral groundwater inflow, is used to numerically examine the interactions of soil water 

and groundwater and calculate the water budget during the freezing-thawing cycle.  

2 Methods 

2.1 Study area and conceptual model 85 

The Ordos Plateau in Northwestern China is one of the most intensively studied groundwater basins due to its 
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dependence on groundwater (Hou et al., 2010;Jiang et al., 2018). The main aquifer is the thick Cretaceous 

sandstone, which is overlain by thin Quaternary sediments. Due to the spatially undulating topography and low 

permeability of the sandstone aquifer, water table undulation is a subdued replica of the topography and regional 

groundwater generally flows laterally from topographic highs to topographic lows of a catchment. In a specific 90 

catchment, as a result of the occurrence of a small lake in topographic lows and the contribution of lateral 

groundwater flow from topographic highs, water table is shallow in topographic lows near the lake.  

The Ordos Plateau has a semi-arid and cold climate. According to the meteorological data in the Otak 

station from 1955 to 2016 (data from China Meteorological Data Service Center, available at http://data.cma.cn), 

the annual mean precipitation is 265 mm and the annual mean evaporation is 1370 mm. The average monthly 95 

temperature decreases from -1.5 ℃ in November to -10.4 ℃ in January and increases from -6.4 ℃ in February to 

0.9 ℃ in March, therefore, the period from late November to late March corresponds to the freezing-thawing 

cycle. Groundwater level declines induced by evapotranspiration in the summer and by freezing in the winter 

have been reported in some sites with shallow groundwater (Jiang et al., 2017;Zhang et al., 2019). The 

relationship between groundwater, soil water and the summertime atmospheric conditions, i.e., infiltration and 100 

evapotranspiration, has been numerically coupled by some researchers (Chen et al., 2019;Zhao et al., 2020). 

However, there is no numerical study on how groundwater and soil water dynamics respond to wintertime 

atmospheric conditions.  

The Wudu Lake catchment is one of the small catchments located to the southeast of the first-order water 

divide of the Ordos Plateau. The distribution of water table elevations in the Wudu lake catchment can be found 105 

in Jiang et al. (2018) while the zone of flowing wells, i.e., with higher hydraulic head than the topography, can be 

found in Wang et al. (2015). There is a monitoring site of soil water content and groundwater level in the 

topographic lows of this catchment. The occurrence of several flowing wells near the monitoring site indicates 

that the site belong to the discharge area and could receive lateral groundwater flow from topographic highs. The 

water table depths are recorded by using water level loggers in a shallow well with a depth of 10 m while the 110 

temperatures and liquid water content in the Quaternary deposits are recorded by using 5TM sensors produced by 

Decagon Devices at 8 depths (at around 10 cm, 20 cm, 30 cm, 50 cm, 70 cm, 90 cm, 110 cm, 150 cm). As shown 

in Fig. 1, water table depth increases from 115 cm on 28 NOV 2015 to 143 cm on 29 JAN 2016, which is a direct 

result of freezing-induced water migration from groundwater to the freezing front. 

At the monitoring site, lateral groundwater flow had been found to be an indispensable component of 115 

groundwater budget (Jiang et al., 2017). Fig. 2 shows the control of main hydrological and hydrogeological 
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processes on groundwater level during the freezing-thawing cycle. The processes leading to water level decline 

include water migration induced by freezing and evaporation due to the dry climate, and the processes leading to 

water level rise is lateral groundwater flow throughout the cycle and infiltration of thawed water during the 

thawing stage.  120 

 

Figure 1. The contour map showing the change of soil temperature at the study site during the freezing-thawing 

cycle. Also shown is the fluctuating groundwater level monitored at the study site. 

   

Figure 2 The conceptual models of hydrological processes and groundwater regime in semi-arid regions during 125 

the seasonally freezing and thawing stages. 

2.2. The SHAW model 

The Simultaneous Heat and Water (SHAW) model (Flerchinger and Saxton, 1989) is one of the most robust 

models for freezing-induced water migration (Hayhoe, 1994;DeGaetano et al., 2001;Kahimba et al., 2009;Zhang 

et al., 2017). The contributions of liquid water, ice, and vapor contents have been considered in the water balance 130 

equation, and the contributions of heat conduction, phase change, liquid flow, and vapor gas diffusion have been 

considered in the energy balance equation (Li et al., 2010). Because water flow in the unsaturated zone is 

predominantly vertical (Stephens, 1996;Romano et al., 1998;Van Dam and Feddes, 2000), the SHAW model only 
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accounts for the effects of soil freezing and thawing on water redistribution within a one-dimensional (1D) soil 

column. Moreover, by adding a source term in the water balance equation, it has the ability to account for the 135 

contribution of lateral groundwater flow to water level in the soil column. Therefore, the SHAW model is suitable 

to couple the groundwater dynamics with soil water dynamics during the freezing-thawing cycle as observed in 

our field site. 

Considering convective heat transfer by liquid, latent heat transfer by ice and latent heat transfer by vapor, 

the energy balance equation in the soil matrix is expressed as 140 

=i l v v
s i f T l l v

T T q T q
C L k c L

t t z z z z t

 
 

         
               

                (1) 

where T is temperature [Ɵ], θi is volumetric ice content [-], z is soil depth [L], t is time [T], ρi, ρl  and ρv are 

densities of ice, liquid water and vapor [M L-3], respectively, Lf and Lv are latent heat of fusion and vaporization 

[L2 T-2], respectively, ql is liquid water flux [L T-1], qv is water vapor flux [M L-2 T-1], cl is specific heat capacity of 

water [L2 T-2 Ɵ-1], Cs is volumetric heat capacity of soil [M L-2 T-2 Ɵ-1], and kT is thermal conductivity of soil [M L2 145 

T-3 Ɵ-1]. Calculation of Cs and kT can be found in Flerchinger and Saxton (1989) and is not reproduced here. 

By considering ice content change and vapor flux, the water balance equation is written as  

1
= 1l i i v

l l

q
K U

t t z z z

   

 

      
           

                         (2) 

where θl is liquid water content [-], K is hydraulic conductivity [L T-1], ψ is soil matric potential [L], and U is a 

source/sink term for water flux [T-1]. Soil water characteristic curves, which describe the relationship between soil 150 

matric potential and liquid water content, are defined for both unfrozen and frozen soils. Here, the van Genuchten 

equation (van Genuchten, 1980) is selected, which is written as 

 1
mnl r

s r

 


 


 


                                  (3) 

where θs and θr are saturated and residual water content [-], α [L-1], n [-] and m [-] are empirical parameters. α 

equals the inverse of the air-entry value, n is a pore-size distribution index and m=1-1/n. In the frozen zone, due to 155 

the co-existence of liquid water and ice, matric potential is strongly dependent on temperature, and the matric 

potential is obtained by the following equation (Fuchs et al., 1978): 

=
273.15

fL T

g T



                                     (4) 

where g is the acceleration of gravity [L T-2]. Eq. (4) indicates that as the negative temperature increases, the soil 

suction also increases (matric potential becomes more negative). 160 

The hydraulic conductivity of the unfrozen zone is computed by 
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                                 (5) 

where Ks is the saturated hydraulic conductivity [L T-1], Se [-] is the effective saturation calculated by 

(θl-θr)/(θs-θr), and l [-] is a pore-connectivity parameter which is assumed to be 0.5 in the original work of 

(Mualem, 1976). Note that in the saturated unfrozen zone, K equals Ks, but in the unsaturated unfrozen zone, 165 

K equals unsaturated hydraulic conductivity (Ku). In the frozen zone, due to occupation of ice in the pores, 

the unsaturated hydraulic conductivity computed from Eq. (5) is reduced linearly with ice content and is 

assumed to be zero when the porosity is decreased to 0.13 (Flerchinger, 2000). 

2.3. Model inputs 

In the following, based on the conceptual model shown in Figure 2, we use SHAW to couple soil water and 170 

groundwater dynamics in a 1D soil column during the freezing-thawing cycle from 28 NOV 2015 to 1 APR 2016, 

as such to understand how the coupled unsaturated-saturated processes respond to wintertime atmospheric 

conditions. To ensure that the lateral groundwater inflow occurs within the saturated zone, the length of the 1D 

soil column is set to be 155 cm. The model domain is uniformly divided into 31 layers, which results in 32 nodes. 

The top node has an atmospheric boundary condition, while the bottom node has a zero-flux and 175 

specified-temperature. Following Flerchinger (2000), the occurrence of lateral groundwater flow is realized by 

setting a specified hydraulic gradient at the 31st node. The fluctuation of groundwater level is an outcome of 

wintertime atmospheric conditions and lateral groundwater flow, while the fluctuations of soil water content are 

controlled by both wintertime atmospheric conditions and groundwater dynamics.  

The inputs for the atmospheric boundary condition include maximum air temperature, minimum air 180 

temperature, wind speed, precipitation, solar radiation and dew-point temperature. The first four parameters 

available from the observations at the Otak meteorological stations, the parameter of solar radiation is calculated 

by the Angström-Prescott equation (Yorukoglu and Celik, 2006) based on the sunshine duration (data available 

from China Meteorological Data Service Center), and the dew-point temperature is calculated by the 

Hyland-Wexter equation (Wexler et al., 1983) based on relative humidity, maximum air temperature and 185 

minimum air temperature. Fig. 3 shows the maximum and minimum air temperatures, dew-point temperature and 

precipitation. The inputs for the lower boundary condition at the bottom include a zero hydraulic conductivity to 

insure a no-flux boundary condition, and the daily averaged soil temperature measured at approximately 

corresponding depth for the specified-temperature boundary condition. The model spin-up is run for 30 days 

before the start of freezing time (28 NOV 2015) to reach a quasi-steady state. The initial conditions of soil water 190 
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content and soil temperature for spin-up are determined based on measured values on 29 OCT 2015.  

 

Figure 3 the maximum daily air temperature, the minimum air temperature, dew-point temperature and 

precipitation during the freezing-thawing cycle from 28 NOV 2015 to 1 APR 2016. 

 195 

Although soil samples from all depths belong to sand or loamy sand, soil texture differs in the profile. The 

percentage of clay ranges between 5 and 8% in the layer between 70 and 100 cm, and between 1 and 4% in other 

depths (Zhao et al., 2020). Therefore, the model domain is divided into three layers. The parameters for the van 

Genuchten (1980) and Mualem (1976) models obtained by Zhao et al. (2020) are further calibrated, which are 

shown in Table 1. As shown in Table 2, the further calibrated parameters result in much lower RMSEs. Based on 200 

the possible range of lateral flow rate varying between 0.96 and 1.16 mm/d (Jiang et al., 2017), the lateral inflow 

rate is calibrated to be 1.03 mm/d, which leads to the lowest RMSE of water table depth. This base case is 

denoted as Scenario A in Sect. 3.2. 

To examine the role of soil heterogeneity in freezing-induced water migration, in Scenario B, we assume 

the whole soil column has the same soil texture as that of 0 cm to 70 cm, and all other conditions are kept 205 

unchanged as Scenario A. By setting the lateral inflow rate to be zero, Scenario A changes into Scenario C and 

Scenario B changes into Scenario D. Because the disappearance of lateral groundwater inflow would lead to 

much deeper water table depth, the length of the 1D soil column in Scenarios C and D is extended to 200 cm. In 

Scenario C, the layer from 155 cm to 200 cm is assumed to have the same soil texture as that from 100 cm to 155 

cm. Because there is no temperature measurement at 200 cm, the temperature at the lower boundary is estimated 210 

by the method proposed by Hirota (2002), which is based on heat conduction and energy balance. 
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Table 1 Calibrated hydraulic parameters for the van Genuchten (1980) and Mualem (1976) models 

Depth (m) θr
 
(m

3
 

m
-3

) θs
 
(m

3
 m

-3
) α (m-1) n (-) Ks

 
(m d

-1

) 

0 - 0.7 0.012 0.408 4.1 2.06 3.84 

0.7 - 1.0 0.076 0.381 3.6 1.86 0.41 

1.0 -1.5 0.032 0.403 6.4 2.26 3.41 

 

Table 2 The RMSEs of simulated liquid water content obtained with different parameters 215 

Parameters 10 cm 20 cm 30 cm 50 cm 70cm 

Calibrated parameters 0.0213 0.0205 0.0289 0.0175 0.0231 

Initial parameters 0.0485 0.0512 0.0553 0.0432 0.0427 

3 Results and discussion 

3.1 Field data showing freezing-induced water migration and water level decline  

During the freezing stage from 28 NOV 2015 to 29 FEB 2016, there is a general trend of deepening frost 

depth (Fig. 1). The dates of the start of freezing, i.e., when soil temperature drops to 0 ℃, at 10 cm, 20 cm, 30 cm, 

50 cm, and 70 cm are 02 DEC, 15 DEC, 16 DEC, 9 JAN and 23 JAN, respectively (Fig. 4). At 10 cm, 20 cm and 220 

30 cm below surface, there is a sharp decrease in liquid water content when the soil temperature drops to 0 ℃, 

while at 50 cm and 70 cm below surface, due to freezing-induced water migration toward the freezing front, there 

is a gradual decrease in liquid water content before reaching a temperature of 0 ℃. At 90 cm below surface, 

probably because the freezing front is close enough to the sensor, although the temperature at the sensor does not 

reach 0 ℃, there is a significant decrease in liquid water content on 29 FEB due to freezing-induced water 225 

migration. Therefore, the relationship between temperature and liquid water content recorded by 5TM sensors, 

which are based on the frequency domain reflectometer (FDR) method, well reflects the effect of freezing on 

liquid water content. 

Due to the rising air temperature in spring, soil temperature at 10 cm increased from below 0 ℃ to above 

0 ℃ on 1 MAR, which is considered to be the start of the thawing stage in the current study. Because the water 230 

level is highest on 1 APR as a result of the downward infiltration of thawed water, 1 APR is considered to be the 

end of the thawing period. For the four sensors at 10 cm, 20 cm, 30 cm and 50 cm, the start dates of thawing 
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stage are 1 MAR, 2 MAR, 3 MAR, and 5 MAR, while for the sensor at 70 cm, the start date of thawing stage is 2 

MAR, implying the occurrence of bi-directional thawing. Different from the quick response of soil temperature to 

freezing, the response of soil temperature to thawing is a slow process. For the 3 sensors at 10 cm, 20 cm and 30 235 

cm, the duration from start to end of thawing is 13 days, while for the 2 sensors at 50 cm and 70 cm, the durations 

from start to end of thawing are 18 days and 26 days, respectively. The thawing of frozen soil is accompanied by 

a trend of increasing liquid water content. The liquid water content at the end of thawing is much higher than that 

before freezing, indicating the contribution of freezing-induced water gain.  

 240 

Figure 4 The observed hourly liquid water content and soil temperatures during the freezing-thawing cycle from 

28 NOV 2015 to 1 APR 2016.  

 

As shown in Fig. 1, water table depths on 28 NOV and 1 APR are 115 cm and 90 cm, respectively. Because 

snowfall in winter is limited, the much higher water level at the end of thawing stage is mainly due to the 245 

occurrence of lateral groundwater inflow as reported in Jiang et al. (2017). The lowest water level equaling 143 

cm below surface occurs on 29 JAN. From 29 JAN, there is a trend of rising water level, which is one month 

earlier than the occurrence of thawed water infiltration during the thawing stage. This phenomenon can also be 

attributed to lateral groundwater inflow. The occurrence of lateral groundwater inflow also alleviated the 
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magnitude of freezing-induced groundwater level decline from 28 NOV to 29 JAN, i.e., freezing-induced 250 

groundwater level decline should be greater than 28 cm. To quantify the water budget during the 

freezing/thawing cycle, the abovementioned model is constructed to determine the fluxes of freezing-induced 

migration, lateral groundwater flow, infiltration and soil evaporation. 

3.2 Freezing-induced water redistribution: the effect of lateral groundwater flow and soil heterogeneity 

Based on the parameters of van Genuchten (1980) and Mualem (1976) equation listed in Table 1, and the 255 

lateral flow rate of 1.03 mm/d, there are good fits between simulated and measured liquid water content in the 

frozen zone, and also for soil temperature (Fig. 5) and water level (Fig. 6a). Fig. 5 also shows the simulated total 

water content, which coincides with liquid water content before freezing, but increases rapidly due to 

freezing-induced water migration from the underlying soil and finally maintains at a stable value corresponding 

to the completely frozen state. In the frozen zone, the magnitude of increase in total water content increases from 260 

the shallow to the deep (Fig.5 and 6a), indicating that the distance to the water table not only controls the initial 

liquid water content, but also the amount of freezing-induced water gain from underlying soils.  

 

Figure 5  The observed and simulated liquid water content and simulated total water content (θt) (a1-a5) and soil 

temperature (b1-b5) at the 5 different depths within the frozen zone during the freezing-thawing cycle. 265 
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Figure 6 The frost depth, groundwater level and total water content under the four scenarios. (a) Scenario A, 

heterogeneous soil profile with a lateral flow rate of 1.03 mm/d; (b) Scenario B, homogeneous soil profile with a 

lateral flow rate of 1.03 mm/d; (c) Scenario C, heterogeneous soil profile without lateral inflow; (d) Scenario D, 

homogeneous soil profile without lateral inflow. 270 

 

Soil texture and the corresponding hydraulic conductivity are also factors controlling the flux of 

freezing-induced water migration through the unfrozen zone. Because the soil texture in the layer from 70 cm to 

100 cm is slightly different from overlying and underlying soils, we compare the distribution of total water 

content under the homogeneous case (Scenario B, Fig. 6b) with that of the base case (Scenario A, Fig. 6a). We 275 

find the low Ks of the middle layer restricts water migration into the part of frozen zone overlying the middle 

layer. As shown in Table 3, the increase of total water content in the frozen zone is 0.126 for Scenario B 

(corresponding to an increased water storage of 119.7 mm), and is 0.106 for Scenario A (corresponding to an 

increased water storage of 96.1 mm). Scenario A also has a smaller magnitude of freezing-induced water table 

decline (Table 3). Moreover, due to the ability of clay to retain more water, before late January when the frost 280 

depth is still away from the middle layer, the middle layer shown in Fig. 6a has more liquid water than that 

shown in Fig. 6b; from late January to late February when the freezing front in Fig. 6a is shallower than the 

bottom of the middle layer, the unfrozen part of the middle layer also has higher water content than the 

underlying soil.   
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Table 3 A comparison of water table decline (∆WTD), frost depth (FD), and water gain in the frozen zone 285 

under different groundwater conditions. 

Groundwater 

conditions 

Heterogeneous 

(low Ks middle layer) 
Homogeneous 

∆WTD 

(mm) 

FD 

(cm) 

∆SFZ 

(mm) 
∆TWC 

Mean 

TWC 

∆WTD 

(mm) 

FD 

(cm) 

∆SFZ 

(mm) 
∆TWC 

Mean  

TWC 

Fixed WTD=1.2 m 0 90 114.5 0.127 0.283 0 95 142.8 0.150 0.304 

LFR=1.03 mm/d 15 90 96.1 0.106 0.265 30 95 119.7 0.126 0.282 

LFR=0 mm/d 40 95 67.3 0.071 0.236 55 100 94.1 0.094 0.256 

∆SFZ represents increased water storage in the frozen zone, ∆TWC represents increased total water content in the frozen zone, 

and Mean TWC represents the mean total water content in the frozen zone at the state of completely frozen. 

 

Lateral groundwater flow is a component of water budget influencing water level. When there is no lateral 290 

groundwater flow, in either the heterogeneous case (Scenario C, Fig. 6c) or the homogeneous case (Scenario D, 

Fig. 6d), the lowest water level occurs at the end of the freezing stage. By comparing the simulated groundwater 

level under a series of lateral groundwater inflow rates, we find the occurrence of lateral groundwater inflow 

alleviates the magnitude of freezing-induced water level decline, and leads to a trend of earlier water level rise 

before the start of the thawing stage (Fig. 7). Therefore, in the field, the existence of lateral groundwater inflow 295 

can be determined by the earlier occurrence of groundwater level rise before the start of the thawing stage. Due to 

the occurrence of lateral groundwater inflow, the rise in water level from late January to late February also 

restricts the frost depth to some extent (Table 3).  

 

Figure 7 The temporal variations of simulated water table depth under different lateral groundwater inflow rates.   300 
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The higher water level caused by lateral groundwater flow would be beneficial for freezing-induced water 

migration towards the freezing front. In the heterogeneous cases, the increase in total water content in the frozen 

zone is found to be 0.106 in Scenario A, but is only 0.071 in Scenario C without lateral groundwater flow; in the 

homogeneous cases, the increase in total water content in the frozen zone is found to be 0.126 in Scenario B, but 

is only 0.094 in Scenario D without lateral groundwater flow (Table 3). Therefore, compared with scenarios 305 

without lateral groundwater inflow, the occurrence of lateral groundwater inflow can inevitably lead to an 

increased freezing-induced water accumulation.  

If a fixed head equaling 1.2 m below surface is assigned at the lower boundary, the increase in total water 

content in the frozen zone is 0.127 for the heterogeneous case, and is 0.150 for the homogeneous case (Table 3). 

This confirms that a fixed head lower boundary condition would inevitably overestimate freezing-induced water 310 

migration. As we pointed out in the Introduction part, a fixed head lower boundary condition implies 

instantaneously replenishment of groundwater. The results shown in Fig. 7 indicate that an even larger 

groundwater inflow is needed to maintain a stable water level.  

3.3 Soil evaporation during the freezing-thawing cycle 

By comparing model results with and without consideration of the three snowfall events, we find snowfall 315 

did not infiltrate into the soil column due to the low permeability of frozen soil and got evaporated directly, 

implying that soil water evaporation is the only form of water loss leaving the top of the soil column during the 

freezing-thawing cycle. Therefore, we use the evaporation rate without considering snowfall events to represent 

actual soil evaporation. Note that although snowfall is not considered, the atmospheric conditions associated with 

the snowfall event on 13 FEB still result in higher evaporation rate (Fig. 8).  320 

Based on the trend of evaporation rate versus time, we identify three stages of soil water evaporation. Stage 

Ⅰ has a trend of decreasing evaporation rate, stage Ⅱ has a limited evaporation rate, and stage Ⅲ has a trend of 

increasing evaporation rate. In both scenarios, the start of stage Ⅱ corresponds to a frost depth of around 20 cm.      

In Scenario A, the mean evaporation rates in the three stages are 0.36, 0.18 and 0.59 mm/d, respectively (Fig. 8a), 

leading to a cumulative evaporation of 32.1 mm; in Scenario B, the mean evaporation rates in the three stages are 325 

0.53, 0.21 and 1.55 mm/d (Fig. 8b), respectively, corresponding to a cumulative evaporation of 55.3 mm. The 

high evaporation rate in stage Ⅲ, which is a direct result of accumulation of liquid water during the thawing 

stage, well explains the occurrence of soil salinization in spring (Liu et al., 2009;Lopez et al., 2010;Bechtold et 

al., 2011). Similar three stages of temporal evolution of soil evaporation during the freezing-thawing cycle have 
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been reported in several field studies (Kaneko et al., 2006;Wu et al., 2016;Xue et al., 2020).  330 

 

Figure 8 The simulated daily soil evaporation for Scenario A (a) and Scenario B (b). Also shown is the mean 

evaporation rate for each stage. 

 

In subsect. 3.2, based on the difference of total water content between the beginning and the end of the 335 

freezing stage, the increased water storage in the frozen zone induced by freezing was calculated to be 96.1 mm 

for Scenario A, and 119.7 mm for Scenario B. Considering the amount of water loss leaving the soil column due 

to soil evaporation, the actual cumulative freezing-induced water migration into the frozen zone should be 115.6 

mm for Scenario A and 146.0 mm for Scenario B. Therefore, a clear quantification of soil evaporation is critical 

to understanding interactions of soil water and groundwater induced by freezing. 340 

3.4 Water budgets during the freezing/thawing cycle 

Because almost all snowfall are evaporated without entering the subsurface, soil evaporation and lateral 

groundwater inflow are the only two processes influencing the balance of water in the soil column. If the 

freezing/thawing cycle is divided into the freezing stage and the thawing stage, the balance of water in each stage 

can be written as 345 

0 0 1 1s u F s u F FS S q t S S ET t                                 (6a)  

1 1 2 2s u T s u T TS S q t S S ET t                                 (6b) 
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where Ss0 [L], Ss1 [L] and Ss2 [L] are cumulative water storages in the saturated zone at the beginning of freezing 

stage, at the end of freezing stage (beginning of thawing stage) and at the end of the thawing stage, respectively; 

Su0 [L], Su1 [L] and Su2 [L] are cumulative water storages in the unsaturated zone at the beginning of freezing stage, 350 

at the end of freezing stage (beginning of thawing stage) and at the end of the thawing stage, respectively; q [L/T] 

is the mean rate of lateral groundwater inflow during the freezing/thawing cycle; ∆tF [T] and ∆tT [T] are the 

durations of the freezing and thawing stages, respectively; ETF [L/T] and ETT [L/T] are  the mean soil 

evaporation rates during the freezing and the thawing stages, respectively. The values of each term in Eq. (8) are 

listed in Table 4. 355 

Table 4 Water budgets during the freezing-thawing cycle 

Stage Duration 
∆t 

(d) 

Initial Ss 

(mm) 

Initial Su 

(mm) 

q·∆t 

(mm) 

ET·∆t 

(mm) 

Final Ss 

(mm) 

Final Su 

(mm) 

Freezing 28 NOV 2015 - 28 FEB 2016 93 120.9 246.4 95.8 19.5 80.6 362.9 

Thawing 29 FEB 2016 - 1 APR 2016 32 80.6 362.9 33.0 12.6 239.6 224.4 

 

Apparently, the groundwater loss during the freezing stage is calculated by 
0 1s sS S , which equals 40.3 

mm and corresponds to a water table decline of 10 cm. In fact, such a water table decline has been alleviated by 

the lateral groundwater inflow. The freezing-induced groundwater loss should be calculated by 
0 1s s FS S q t   , 360 

which equals 136.1 mm. In a groundwater flow model without considering the unsaturated zone, this process can 

be characterized by a mean upward groundwater flux of 1.46 mm/d with a duration of 93 days at the upper 

boundary. This is consistent with the dominance of upward flux at the upper boundary in the unfrozen period at 

the study site (Jiang et al., 2017). Therefore, the current study confirms that shallow groundwater in the discharge 

area of a semi-arid catchment is dominated by upward flow, which is consistent with the direction of regional 365 

groundwater flow in the discharge area (Hubbert, 1940; Toth, 1962).  

Similarly, in the thawing stage, groundwater gain from downward infiltration should be calculated by 

2 1s s TS S q t    , which equals 126.0 mm. In a groundwater flow model, this process can be characterized by a 

mean downward groundwater flux of 3.94 mm/d at the upper boundary with a duration of 32 days. As 

demonstrated in Jiang et al. (2017), in the unfrozen period, the stage from late SEP 2014 to early OCT 2014 (with 370 

a duration of 18 days) is the only stage with net infiltration in our study site, and the net downward groundwater 

flux equals 2.99 mm/d. The current study indicates that the thawing stage has an even larger downward 

groundwater flux. Therefore, it is interesting to examine the pattern of two-dimensional or three-dimensional 
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groundwater flow induced by the freezing-thawing cycle by using a fully coupled soil-groundwater freeze-thaw 

model in the future.  375 

4 Conclusions 

Based on field observations of soil temperature, liquid soil water content and groundwater level in the 

discharge area of a catchment, it was found that the observed temporal variations of wintertime liquid water 

content and groundwater level are not only controlled by freezing and thawing, but also by lateral groundwater 

inflow. Therefore, a model is built to examine the responses of soil water and groundwater to wintertime climatic 380 

conditions and occurrence of lateral groundwater inflow in the saturated part of the soil column. The calibrated 

model increases our understanding of water balance as well as freezing-induced water migration during the 

freezing-thawing cycle.   

Our model results showed that almost all snowfall is evaporated without infiltrating into the soil column due 

to the low permeability of frozen soil. Therefore, soil evaporation is the only form of water loss, while lateral 385 

groundwater inflow is the only source of water gain. By comparing models with and without lateral groundwater 

inflow, we found the occurrence of lateral groundwater inflow led to much smaller magnitude of 

freezing-induced water level decline, and a trend of rising water level before the start of the thawing stage. 

Consequently, compared with the case without lateral groundwater inflow, the higher water level due to lateral 

groundwater inflow resulted in much larger freezing-induced water migration into the frozen zone. We also found 390 

the middle layer with lower saturated hydraulic conductivity restricts both evaporation rates and freezing-induced 

water migration. 

Based on the budget of groundwater during the freeing-thawing cycle, the mean flux of freezing-induced 

groundwater loss in the freezing stage with a duration of three months is 1.46 mm/d, and the mean flux of 

thawing-induced groundwater gain in the thawing stage with a duration of one month is found to be 3.94 mm/d. 395 

As found by Jiang et al. (2017), due to the semi-arid climate, the only stage with net recharge in the unfrozen 

period is from late September to early October. Therefore, combined with the fluxes obtained by Jiang et al. 

(2017) for the unfrozen period, the fluxes during the freeing-thawing cycle obtained in the current study can be 

useful for future transient groundwater flow models to characterize the control of climatic conditions on 

groundwater flow in semi-arid regions with seasonally freezing and thawing processes.  400 
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